

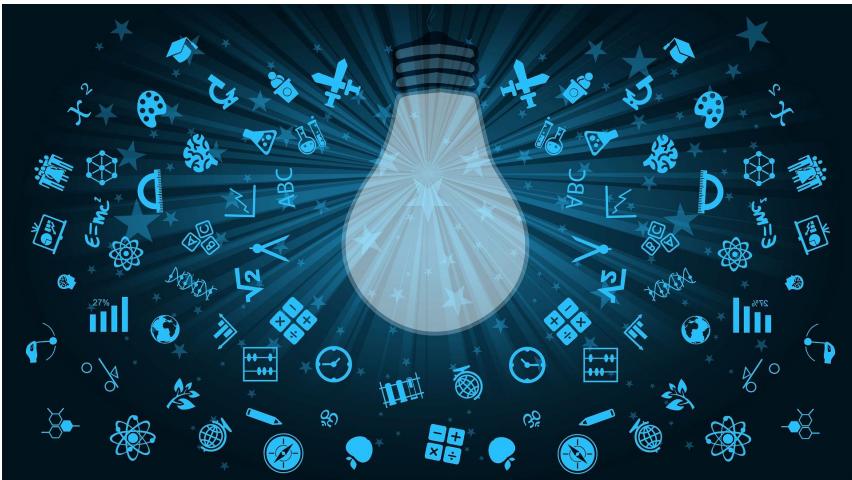
Exploring Educational Research and Literature on Tabletop Games

Niall McFadyen
G.A.M.E Conference
MTS PD DAY
October 25 2019

Who I am

Niall McFadyen

- Teacher-Multimedia and Technology Middle Years.
- Parent.
- Avid game player.
- M.Ed, B.A., B.Ed, PBDE
- Website: www.niallmcfadyen.ca


Games Featured in Research and Literature

- Pandemic
- Settlers of Catan
- Snakes and Ladders(Variations)
- Dixit
- Forbidden Island
- Resistance
- Timeline
- Dungeons and Dragons
- Pathfinder
- Roll Through the Ages
- Carcassonne

Areas of Research

- Game-based Learning
- Numeracy/Mathematics
- Literacy/ELA
- Business
- Counselling
- Science
- Adult Learners
- Computer Science/Computational Thinking
- Libraries/Information Literacy
- Health
- Student Engagement
- Design

Game-Based Learning

According to Qian & Clarke (2016) Game-Based Learning is:

- Where game content and game play enhance learning, knowledge and skills acquisition.
- Entertainment games promote meaningful learning with **adaptive challenge, curiosity, self-expression, discovery, immediate feedback, clear goals, player control, immersion, collaboration, competition, variable rewards, and low-stakes failure**

A consistent finding that games are more interesting than traditional instruction (Randel & Morris, 1992).

Four functions of games for learning are:

- **Preparation for future learning**
- **Teach new knowledge**
- **Practice and reinforcement**
- **Develop 21st century skills**

Plass, Homer, & Kinzer (2015)

Play and Cognitive Development

Playing games and having fun are crucial to child development and can be a powerful tool that uses interaction, social connectedness, problem solving, hypothesis testing, cooperation, and collaboration that promote well-being and resilience that can be enhanced by a facilitator (Hromek & Roffrey, 2009).

Cognitive Connections of Game Based Learning:

- Connects to **Piaget's** idea that play is integral to and evolves with children's stages of cognitive development.
- Connects to **Vygotsky's** that play allows children to achieve beyond their age.
- Allows children to transcend their immediate reality with symbolic thinking.
- Good games strive for the “sweet spot” where a players struggle but are able to succeed reaching a state of flow.

(Plass, Homer, and Kinzer, 2015)

Games engage players through:

- **Cognitive** (mental processing) engagement.
- **Affective** (emotional) engagement.
- **Behavioural** (embodied actions and movement) engagement.
- **Sociocultural** (social interactions) engagement .

(Plass, Homer, and Kinzer, 2015)

Situated Learning

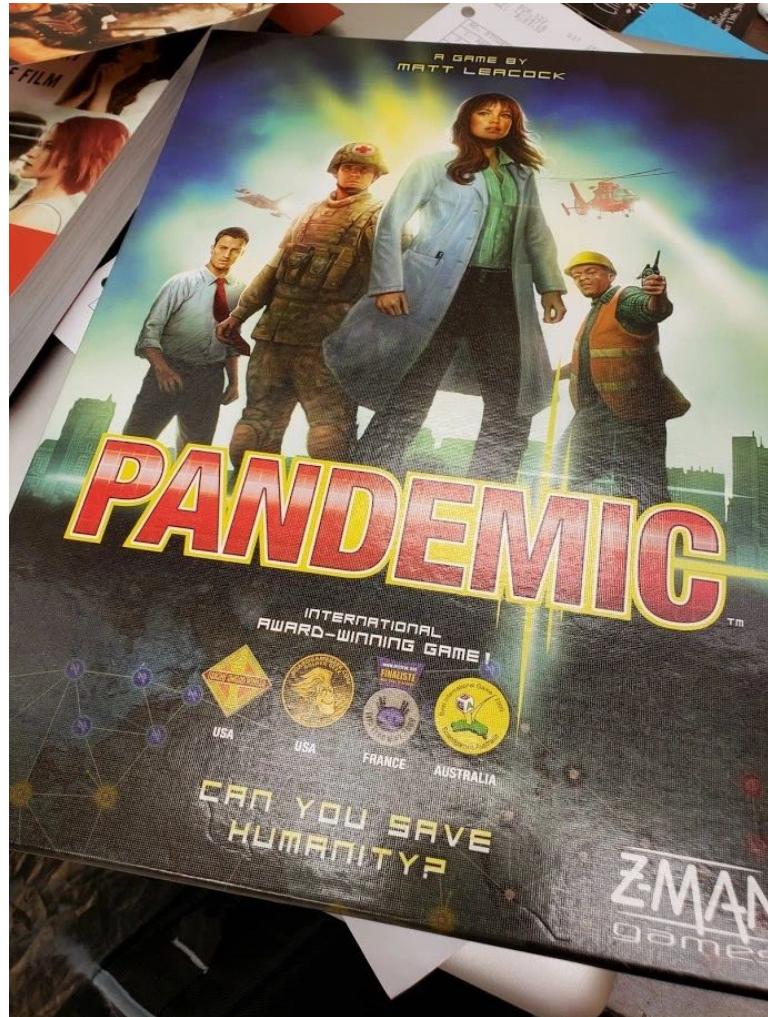
Learning by doing

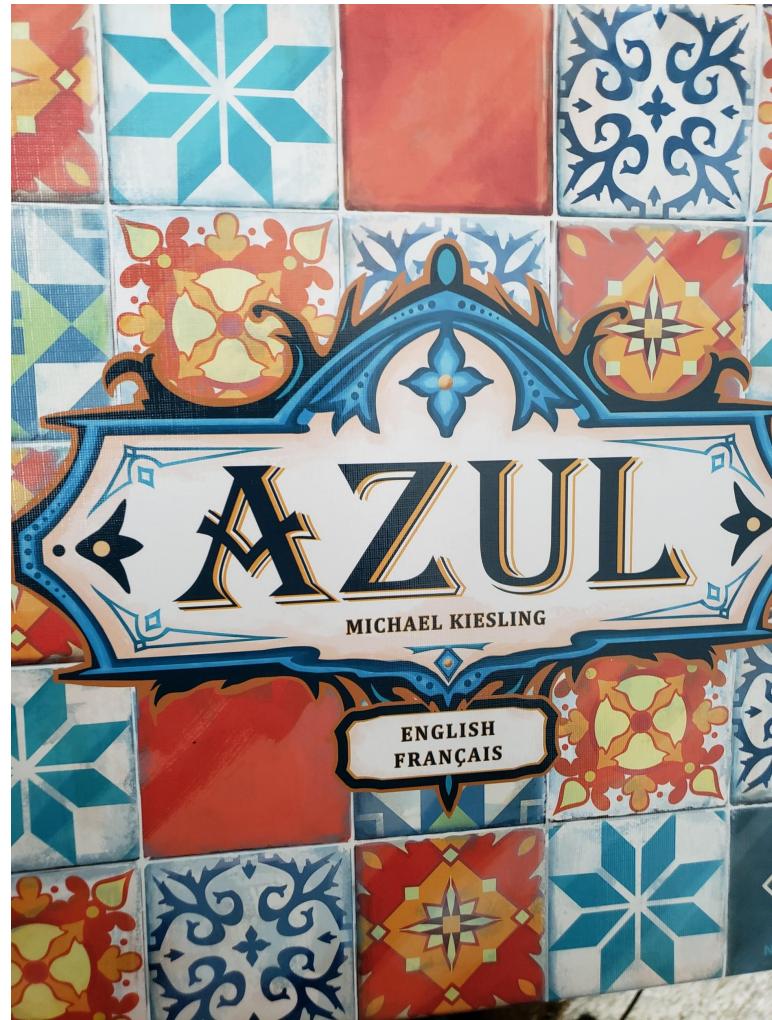
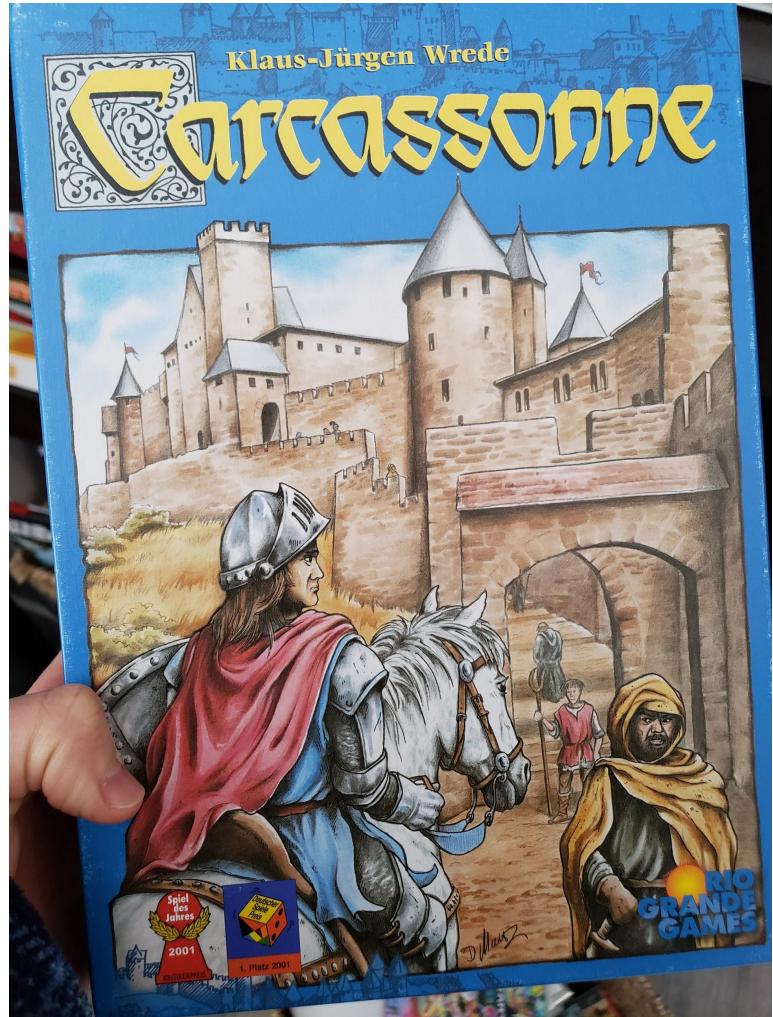
Games can take place in **meaningful** and **relevant** contexts (Plass, Homer, & Kinzer, 2015).

Hattie, Biggs, and Purdie (1996) recommended that most learning should be in context, use tasks in the same domain as content, and promote a high degree of learner activity.

One hypothesis is that information and facts that are hard to retain come to be learned much more effortlessly when learners are playing a game that the learner wants to play (Gee, 2008).

Research has indicated that children are able to perform tasks at higher levels in a playful context (Whitebread et al., 2017).


Modern Games

Modern Tabletop/Board Games

“**Designer Board Games**” feature the name of the designer on the box, differ from traditional games that focus on luck, provide an information-rich environment full of open-ended decisions, while engaging players in a shared community of play that includes common mechanics such as open movement, worker placement, role selection, and cooperation (Mayer & Harris, 2010).

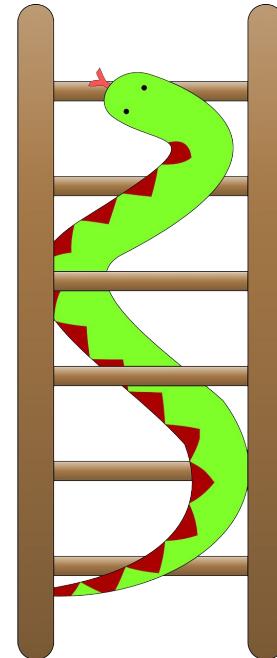
These are different from traditional tabletop games such as Monopoly, Risk, Life, etc.

Exploring the Research

General Ideas/Trends in Research

- The data appears to support using board games in education but there is currently a lack of empirical research
(Gobet, Retschitzki, & de Voogt, 2004; Koehler, Greenhalgh, & Boltz, 2016; Whitebread et al., 2017).
- There is a distinction between educational games (**Edutainment**) and **entertainment** games. Educational games are considered to be “children” or “family” style games rather than strategic games that require higher order thinking and situated learning such as strategy games. Education games are considered less enjoyable and rated lower than entertainment games
(Koehler, Greenhalgh, & Boltz, 2016).
- We should not generalize from research the effectiveness of one game in one learning area to all games in all areas
(Hays, 2005).

How We Learn To Play “Schema Theory”


Järvinen (2008) likens game rules and systems to schema theory emphasizing that mental structure like schemas help players understand games, take actions in games, predict how the game system works, and interact with other players.

Hunsucker (2016) also suggests that when we learn to play board games collaboratively we engage in a learning process that ties into “schema” theory where we remember a single “tree” of the rules representing a game system and not the individual letters and words in the rules.

Mathematics

Early Numeracy

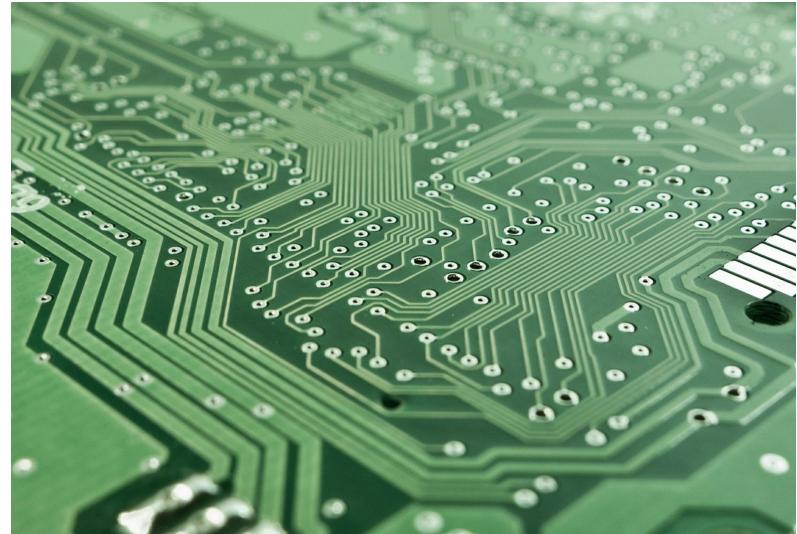
- Multiple studies have shown **playing linear number board games have improved numeracy skills, executive functioning, and mathematical competencies.**
 - Siegler and Ramani (2008) found that playing a linear numerical board game improved low-income children's numeracy skills. Students who played an identical game with colours rather than numbers, did not improve on any measure.
 - Siegler and Laski (2014) improvements with kindergarten students' numeracy and counting skills.
 - Scalise, Daubert, and Ramani (2019) playing numeracy card games with children from low income households found that the game had a lasting effect on numeracy skills and improvements to executive function.
 - Skillen, Berner, and Seitz-Stein (2018) examined using linear number board games in conjunction with models of mathematical competency and found it an effective and less resource intensive than standardized training programs.

Mathematics

Probability

- Math professors Jathan Austin and Susanna Molitoris-Miller (2015) analyzed *Settlers of Catan* and found that it was an open ended opportunity to teach and develop an understanding of probability, expected value, and logical thinking by developing a strategy, quantifying it mathematically, experimenting with it, and revising it.

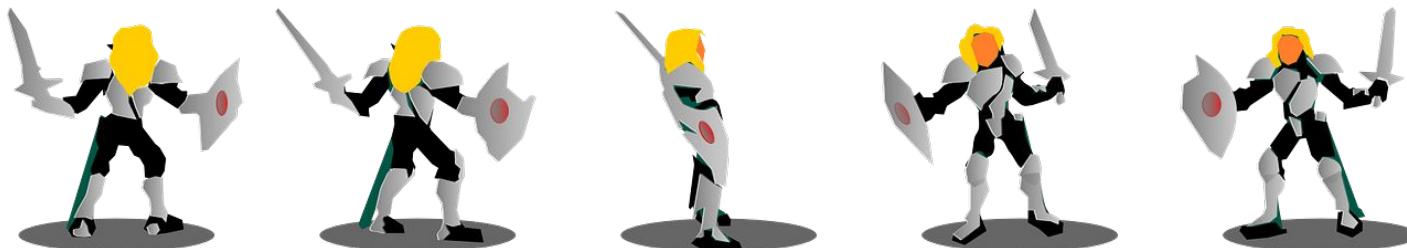
General Skills


- Games such as *Settlers of Catan* and *Carcassonne* can supplement lessons with their use of interpersonal skills, intrapersonal skills, and math concepts that include arithmetic, algebra, geometry, using algorithms, tactics, and probability (Dillingerova, 2012).

Computational Thinking

Computational Thinking

- The cognitive ability to apply fundamental concepts and reasoning that derive from computer science which include algorithmic thinking, conditional logic, decomposition, abstraction, pattern matching, parallelization, evaluation, and generalization (Tsarava, Moeller, Ninaus, 2018).
- Berland and Lee (2011) examined the board game ***Pandemic*** in relation to aspects of computational thinking being used while players engaged with the game. “Computational thinking”. They found that computational thinking takes place while playing this game and suggested a next step would be to more closely connect the computational thinking to the instructional design for its development.


Literacy with Role-Playing Games

Antero Garcia (2019) examined literacy practices used in tabletop games. Looking specifically at *Dungeons and Dragons* he identified that:

- Playing required **talking, listening, and collaborating**.
- There were three primary spaces of literacy: At the table, in the game, and beyond the table.
- Specific literacy practices identified included: **Record keeping, interpreting rules, analyzing in game choices, engaging in roleplay, mapmaking, producing/writing, and recalling localized history and knowledge.**
- Garcia recommended that further research should be done to explore tabletop literacy practices in schools.

Cook, Gremo, and Morgan (2017) suggested that role-playing games such as the *Pathfinder* system can :

- Allow learners to interact with literature in new and layered ways.
- Foster a deeper sense of understanding of story events
- Through gameplay they can begin to recognize relationships across texts, the game, and their own writing

Health and Science

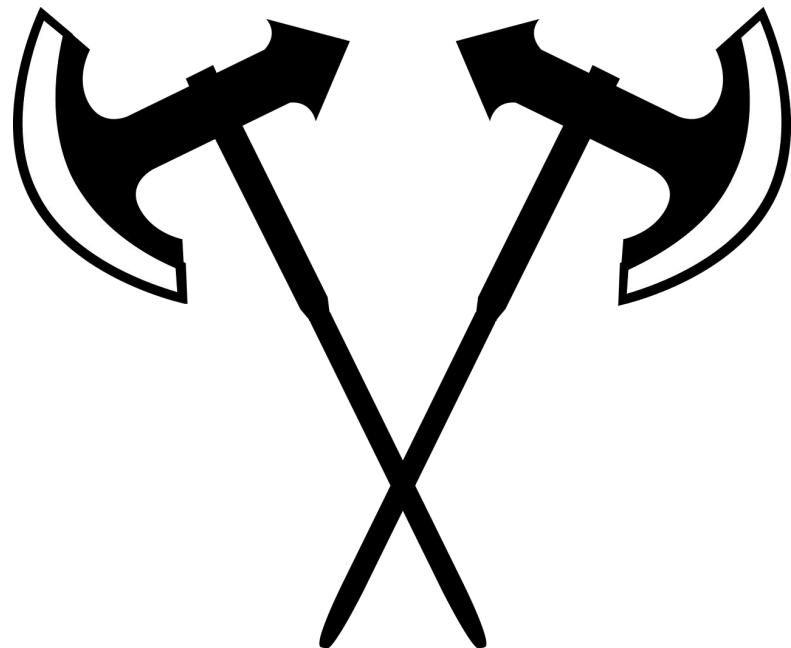
Health Education

In a systematic literature review Gauthier et. al (2019) found:

- Board games have a history of use in therapeutic contexts.
- Board games had a large average effect on health knowledge, small to moderate effect on health behaviours, and a small to moderate effect on biological health.
- There is a need to establish more knowledge about the overall efficacy of board games.

Science

Chiarello and Castellano (2016) developed their own games based on advanced scientific concepts they were teaching


- Game mechanisms were embedded with scientific elements.
- The three games were “Quantum Race”, “Lab on Chip”, and “Time Race”.
- They suggested that their results showed good student understanding, high motivation, high interest, and positive student impact.

Cross Curricular Connections

In a 2011 Case Study, Alexandra Carter explored using a children's version of *Dungeons and Dragons* to a classroom with student designed modifications that tied that game into mathematics, social studies, research skills, and language arts outcomes.

Carter reported:

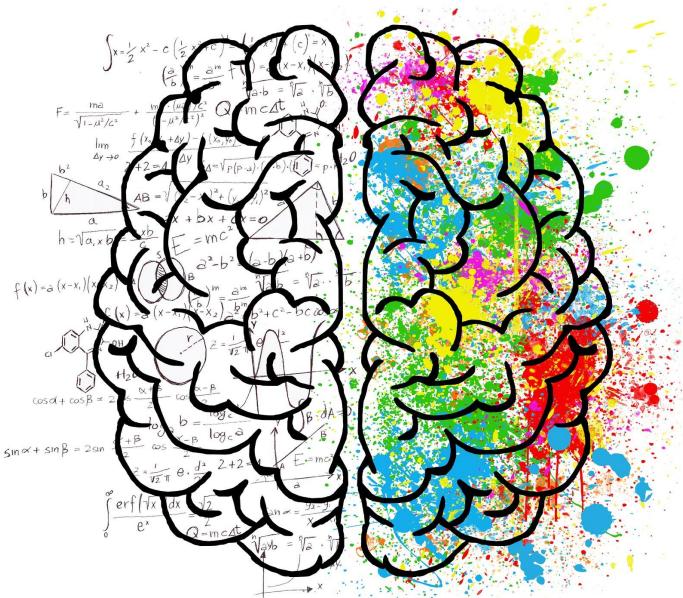
- Enthusiasm and excitement from students.
- Apprehensive and not confident students in areas such as mathematics and reading, showed significant progress in math, while developing stronger reading and writing skills.

Libraries and Information Literacy

Hill (2016) suggested that libraries should consider gaming programs that feature tabletop games because

- It provides resources and materials that everyone has access to regardless of socioeconomic status.
- Libraries are always seeking ways to attract new patrons.
- Research indicates that library gaming programs will encourage return visits for non gaming reasons.
- Historically games have been part of libraries.
- Educational research shows that games can help people learn better through active participation.
- Games can help students with social skills by allowing older and younger student to interact and help each other.
- Tabletop games can foster community building

Dinardo and Broussard (2019) suggest that by using sound pedagogical practices you can effectively teach informational literacy with commercial tabletop games in a highly motivating and engaging way. Their examples include using the game *Resistance* for teaching information searching behaviours and *Pandemic* for teaching group decision making.


Twenty-First Century Skills

Board games such as *Settlers of Catan* can help develop strategic thinking in players by teaching you to manage resources, negotiate, and be more aware and analytic of your environment (Mustata, Guica, & Juliacifre, 2019).

While examining tabletop games such as *Forbidden Island* and *Roll Through the Ages* in undergraduate classrooms, Hayse (2018) concluded that they required the practice of skills such as communication, collaboration, critical reasoning, and critical thinking, while emphasizing that games pushed students out of **passivity** and fostered a sense of belonging for students.

Cognitive Aspects

- Board game play **may** foster skills that generalize to other domains and **may** accelerate development through Piaget's stages of development, but the potential has not been fully explored and results have been inconclusive, lacked details, or have been problematic (Gobet, Retschitzki, & de Voogt, 2004). Most of the research has been based on playing Chess and there are mixed results.
- Games can help students by providing an engaging platform for reading, decoding, analyzing, assessing, and taking action on dynamic information while providing opportunity to strengthen informational processing abilities from multiple source and take on situated roles at different times (Randel & Morris, 1992).
- A study that examined the relationship between board game play and dementia suggested that board game play resulted in less risk of dementia, less chance of cognitive decline, and that “ board game playing might increase or preserve cognitive reserve (Dartigues, et al., 2013).

Post-Secondary

- For communications, advertising, and bio-tech courses, Gonzalo-Iglesia, Lozano-Monterrubio, and Prades-Tena (2018) used *Dixit*, *Timeline*, and other games to teach concepts. Their results showed positive student perspective, high motivation, and high student engagement.
- A modified version *Settlers of Catan* has been used in counselor education to teach about and experience barriers to career development, cultural awareness, and experience oppression in a safe environment (Pietrantoni, Hennig, Totten, Shindelar, & Keene-Orton, 2019).

Implementing Games in Schools

Weisberg, Hirsh-Pasek, Golinkoff, Kittredge, and Klahr (2016) suggest that guided play experiences that combine child-directed nature of free play with learning outcomes and adult mentorship, is an optimal medium for delivering educational content in an enjoyable way that facilitates learning with the best possible educational outcomes.

Mayer and Harris (2010) recommend a variety of ways to implement games depending on the game content and subject matter which **include learning centre based approaches for smaller group games or whole class experiences for games that are easy to play and scale up nicely with larger groups of players.**

Implementing Games in Schools

Dinardo and Broussard (2019) recommend the following “best practices”

- **Know the game had how to teach it.**
- **Help students understand why they play the games in class.**
- **Draw on the experience of others.**
- **Plan in advance for the resources that are needed such as time, knowledge, and money.**

Hays (2005) makes recommendations that include:

- The decision to use games for instruction should be based on a detailed analysis of the learning goals and an analysis on the tradeoffs of using other approaches.
- View games as **adjuncts** and **supports** for educational objectives.
- Learners should be provided with **debriefing** and **feedback** that clearly explain how their game experiences tie into learning objectives.

My Approach to Implementing Games

1. Know the game.
2. Find a meaningful way to implement it.
3. Plan it out.
4. Explain to students why they are playing it.
5. Guide a playthrough.
6. Allow time for independent play.
7. Debrief, reflect, and provide feedback.

Have the games in your class!

Examples/Play Activities

- **Pandemic:**
 - Group Decision Making
 - Computational Thinking
- **Settlers of Catan:**
 - Math Education
 - Strategic Thinking
- **Champions of the Elements/Dungeons and Dragons**
 - Literacy Practices
 - Curricular Integration
- **Carcassonne**
 - Interpersonal Skills
 - Math Concepts

References and Further Reading

Austin, J., & Molitoris-Miller, S. (2015). The Settlers of Catan: Using settlement placement strategies in the probability classroom. *The College Mathematics Journal*, 46(4), 275-282.

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for distributed computational thinking. *International Journal of Game-Based Learning (IJGBL)*, 1(2), 65-81.

Carter, A. (2011). Using Dungeons and Dragons to integrate curricula in an elementary classroom. In *Serious Games and Edutainment Applications* (pp. 329-346). Springer, London.

Chiarello, F., & Castellano, M. G. (2016, October). Games Design as Learning Tool for Science: the Photonics Games Competition Experience. In *10th European Conference on Games Based Learning: ECGBL 2016* (p. 123). Academic Conferences and publishing limited.

Christiaen, J., & Verhofstadt-Denève, L. (1981). Schaken en cognitieve ontwikkeling. *Nederlands Tijdschrift voor de Psychologie en haar Grensgebieden*.

Cook, M., Gremo, M., & Morgan, R. (2017). Playing Around with Literature: Tabletop Role-Playing Games in Middle Grades ELA. *Voices From the Middle*, 25(2), 62-69.

Dartigues JF, Foubert-Samier A, Le Goff M, et al. Playing board games, cognitive decline and dementia: a French population-based cohort study. *BMJ Open* 2013;3: e002998. doi:10.1136/bmjopen-2013-002998

Dillingerová, M. Commensalism between board games and teaching maths. *TEACHING MATHEMATICS III: INNOVATION, NEW TRENDS, RESEARCH*, 61.

DiNardo, C. O., & Snyder Broussard, M. J. (2019). Commercial tabletop games to teach information literacy. *Reference Services Review*, 47(2), 106-117.

Gauthier, A., Kato, P. M., Bul, K. C., Dunwell, I., Walker-Clarke, A., & Lameras, P. (2019). Board games for health: A systematic literature review and meta-analysis. *Games for health journal*, 8(2), 85-100.

Garcia, A. (2019). Gaming Literacies: Spatiality, Materiality, and Analog Learning in a Digital Age. *Reading Research Quarterly*.

Gee, J. P. (2008). Game-like learning: An example of situated learning and implications for opportunity to learn. *Assessment, equity, and opportunity to learn*, 200, 221.

Gobet, F., Retschitzki, J., & de Voogt, A. (2004). *Moves in mind: The psychology of board games*. Psychology Press.

Gonzalo Iglesia, J. L., Lozano Monterrubio, N., & Prades Tena, J. (2018). Noneducational board games in University Education: Perceptions of students experiencing Game-Based Learning methodologies.

Hattie, J., Biggs, J., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta-analysis. *Review of educational research*, 66(2), 99-136.

Hays, R. T. (2005). *The effectiveness of instructional games: A literature review and discussion* (No. NAWCTSD-TR-2005-004). Naval Air Warfare Center Training Systems Div Orlando Fl.

Hayse, M. (2018). Tabletop games and 21st century skill practice in the undergraduate classroom. *Teaching Theology & Religion*, 21(4), 288-302.

Hill, C. (2016). Play On: The Use of Games in Libraries. *The Christian Librarian*, 59(1), 6.

Hromek, R., & Roffey, S. (2009). Promoting Social and Emotional Learning With Games: “It’s Fun and We Learn Things”. *Simulation & Gaming*, 40(5), 626-644.

Hunsucker, A. J (2016). Board games as a platform for Collaborative Learning. Meaningful Play Conference,, 2016. Available at https://www.researchgate.net/publication/309385174_Board_Games_as_a_Platform_For_Collaborative_Learning

Järvinen, A. (2008). *Games without frontiers: Theories and methods for game studies and design*. Tampere University Press.

Jerrim, J., Macmillan, L., Micklewright, J., Sawtell, M., & Wiggins, M. (2018). Does Teaching Children How to Play Cognitively Demanding Games Improve Their Educational Attainment? Evidence from a Randomized Controlled Trial of Chess Instruction in England. *Journal of Human Resources*, 53(4), 993-1021.

Koehler, M. J., Greenhalgh, S. P., & Boltz, L. O. (2016, March). Here we are, now entertain us! A comparison of educational and non-educational board games. In *Society for Information Technology & Teacher Education International Conference* (pp. 567-572). Association for the Advancement of Computing in Education (AACE).

Laski, E. V., & Siegler, R. S. (2014). Learning from number board games: You learn what you encode. *Developmental psychology*, 50(3), 853.

Lean, J., Illingworth, S., & Wake, P. (2018). Unhappy families: using tabletop games as a technology to understand play in education. *Research in Learning Technology*, 26.

Malik, S., & Agarwal, A. (2012). Use of multimedia as a new educational technology tool-A study. *International Journal of Information and Education Technology*, 2(5), 468.

Mayer, B., & Harris, Christopher. (2010). *Libraries got game : Aligned learning through modern board games*. Chicago: American Library Association.

Magallón, S., Narbona, J., & Crespo-Eguílaz, N. (2016). Acquisition of motor and cognitive skills through repetition in typically developing children. *PLoS one*, 11(7), e0158684

Mustata , I. C., Guica, I. R., & Juliacifre, M. (2019). The Potential of Developing Strategic Thinking Skills through Strategic Games with Physical vs. Electronic Participation. *eLearning & Software for Education*, 3.

Peterson, N. K., & Orde, B. J. (1995). Implementing multimedia in the middle school curriculum: Pros, cons and lessons learned. *THE Journal*, 22(7), 70-75.

Pietrantoni, Z., Hennig, J., Totten, J., Shindelar, L., & Keene-Orton, B. (2019). Game-Based Learning in Counselor Education: Strategies for Counselor Training. *The Journal of Counselor Preparation and Supervision*, 12(2), 3.

Plass, J. L., Homer, B. D., & Kinzer, C. K. (2015). Foundations of game-based learning. *Educational Psychologist*, 50(4), 258-283.

Qian, M., & Clark, K. R. (2016). Game-based Learning and 21st century skills: A review of recent research. *Computers in Human Behavior*, 63, 50-58.

Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children's numerical knowledge through playing number board games. *Child development*, 79(2), 375-394.

Randel, J., & Morris, B. (1992). The Effectiveness of Games for Educational Purposes: A Review of Recent Research. *Simulation & Gaming*, 23(3), 261.

Scalise, N. R., Daubert, E. N., & Ramani, G. B. (2019). Benefits of Playing Numerical Card Games on Head Start Children's Mathematical Skills. *The Journal of Experimental Education*, 1-21.

Siegler, R. S., & Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children's numerical development. *Developmental science*, 11(5), 655-661.

Skillen, J., Berner, V. D., & Seitz-Stein, K. (2018). The rule counts! Acquisition of mathematical competencies with a number board game. *The Journal of Educational Research*, 111(5), 554-563.

Tsarava, K., Moeller, K., & Ninaus, M. (2018). Training computational thinking through board games: The case of Crabs & Turtles. *International Journal of Serious Games*, 5(2), 25-44.

Treher, E. N. (2011). Learning with board games. *The Learning Key Inc.*

Weisberg, D. S., Hirsh-Pasek, K., Golinkoff, R. M., Kittredge, A. K., & Klahr, D. (2016). Guided play: Principles and practices. *Current Directions in Psychological Science*, 25(3), 177-182.

Whitebread, D., Neale, D., Jensen, H., Liu, C., Solis, S. L., Hopkins, Hirsh-Pasek, Z. (2017). *The role of play in children's development: a review of the evidence*.

<https://doi.org/10.13140/RG.2.2.18500.73606>

Wigfield, A., Lutz, S. L., & Wagner, A. L. (2005). Early adolescents' development across the middle school years: Implications for school counselors. *Professional school counseling, 9*(2), 2156759X0500900206.

Willet, B. S., Moudgalya, S., Boltz, L., Greenhalgh, S., & Koehler, M. (2018, March). Back to the Gaming Board: Understanding Games and Education through Board Game Reviews. In *Society for Information Technology & Teacher Education International Conference* (pp. 495-503). Association for the Advancement of Computing in Education (AACE).

Wing, J. M. (2006). Computational thinking. *Communications of the ACM, 49*(3), 33-35.

Images used are either original or have been accessed through Pixabay and used under the Pixabay license